A gentle guide to

asynchronous programming

with Eclipse Vert.x
for Java developers

By Julien Ponge, Thomas Segismont & Julien Viet

A gentle guide to asynchronous
programming with Eclipse Vert.x for
Java developers

Julien Ponge, Thomas Segismont, Julien Viet

Version 1.2.0, 2018-02-14

Table of Contents

1. Introduction

1.1. About this guide

1.2. What is Vert.x?

1.3. Core Vert.x concepts
1.3.1. Threading and programming models
1.3.2. Event bus

2. A minimally viable wiki written with Vert.x

2.1. Bootstrapping a Maven project
2.2. Adding the required dependencies
2.3. Anatomy of a verticle
2.4. A word on Vert.x future objects and callbacks
2.5. Wiki verticle initialization phases
2.5.1. Database initialization
2.5.2. Notes about logging
2.5.3. HTTP server initialization
2.6. HTTP router handlers
2.6.1. Index page handler
2.6.2. Wiki page rendering handler
2.6.3. Page creation handler
2.6.4. Page saving handler
2.6.5. Page deletion handler
2.7. Running the application
. Refactoring into independent and reusable verticles
3.1. Architecture and technical choices
3.2. The HTTP server verticle
3.3. The database verticle
3.3.1. Configurable SQL queries
3.3.2. Dispatching requests
3.3.3. Reducing the JDBC client boilerplate
3.4. Deploying the verticles from a main verticle
. Refactoring to Vert.x services
4.1. Maven configuration changes
4.2. Database service interface
4.3. Database service implementation
4.4. Exposing the database service from the database verticle
4.5. Obtaining a database service proxy
. Testing Vert.x code
5.1. Getting started

© o N N 0w w d BN

;o DR RN RN RN D W OW W WR RN R B R BRBR R R
N N © N OO B DN © OO o0 DN © 0 o N OO OO D ON O OGO DN - O

5.2. Testing database operations 53

6. Integrating with a 3rd-party web service 56
6.1. Scenario: backing up to GitHub Gist 56
6.2. Updating the database service 59
6.3. The web client API 60
6.4. Creating anonymous Gists 61

7. Exposing a web API 64
7.1. Web sub-routers 65
7.2. Handlers 66

7.2.1. Root resource 66
7.2.2. Getting a page 67
7.2.3. Creating a page 67
7.2.4. Updating a page 68
7.2.5. Deleting a page 69
7.3. Unit testing the API 69

8. Securing and controlling access 73
8.1. HTTPS support in Vert.x 73
8.2. Access control and authentication 74

8.2.1. Adding Apache Shiro authentication to routes 75
8.2.2. Supporting features based on roles 78
8.3. Authenticating web API requests with JWT 83
8.3.1. Adding JWT support 83
8.3.2. Using JWT tokens 86
8.3.3. Adapting the API test fixture 88

9. Reactive programming with RxJava 90
9.1. Enabling the RxJava APIs 90
9.2. Deploying verticles in order 91
9.3. Partially "Rxifying" HttpServerVerticle 91

9.3.1. Import RxJava versions of Vert.x classes 91
9.3.2. Use delegate on a "Rxified" vertx instance 92
9.4. Executing authorization queries concurrently 92
9.5. Querying the database 93
9.5.1. Direct queries 93
9.5.2. Working with a database connection 93
9.6. Bridging the gap between callbacks and RxJava 94
9.7. Data flows 94

10. Client-side web application using AngularJS 96
10.1. Single page application 96
10.2. Vert.x Backend 97

10.2.1. Simplifying the HTTP verticle code 97

10.2.2. Exposed routes 98

10.3. AngularJS frontend 99

10.3.1. Application view 99
10.3.2. Application controller 102

11. Real-time web features using cross-border messaging over the event bus 106
11.1. Setting up the SockJS event bus bridge 106
11.1.1. On the server 106
11.1.2. On the client 107
11.2. Sending the Markdown content over the event bus for processing 107
11.3. Warning the user when the page is modified 108
12. Conclusion 111
12.1. Summary 411
12.2. Going further 112

12.3. ThatOs all folks! 112

I You can read the latest published version of the guide at http://vertx.io/docs/guide-
. for-java-devs/

Acknowledgements

This document has received contributions from Arnaud Esteve, Marc Paquette,
Ashley Bye, Ger-Jan te Dorsthorst, Htet Aung Shine and others.

http://vertx.io/docs/guide-for-java-devs/
http://vertx.io/docs/guide-for-java-devs/

Chapter 1. Introduction

This guide is a gentle introduction to asynchronous programming with Vert.x, primarily aimed at
developers familiar with mainstream non-asynchronous web development frameworks and
libraries (e.g., Java EE, Spring).

1.1. About this guide

We assume that the reader is familiar with the Java programming language and its ecosystem.

We will start from a wiki web application backed by a relational database and server-side
rendering of pages; then we will evolve the application through several steps until it becomes a
modern single-page application with "real-time". [1: Note that the widespread usage of the term
"real-time" in the context of web technologies shall not be confused with hard or soft real-time in
specialized operating systems.] web features. Along the way you will learn to:

1. Design a web application with server-side rendering of pages through templates, and using a
relational database for persisting data.

2. Cleanly isolate each technical component as a reusable event processing unit called a verticle .

w

Extract Vert.x services for facilitating the design of verticles that communicate with each other
seamlessly both within the same JVM process or among distributed nodes in a cluster.

Testing code with asynchronous operations.
Integrating with third-party services exposing a HTTP/JSON web API.
Exposing a HTTP/JSON web API.

N o g A

Securing and controlling access using HTTPS, user authentication for web browser sessions and
JWT tokens for third-party client applications.

8. Refactoring some code to use reactive programming with the popular RxJava library and its
Vert.x integration.

9. Client-side programming of a single-page application with AngularJs.

10. Real-time web programming using the unified Vert.x event bus integration over SockJS.

The source of both this document and the code examples are available from
https://github.com/vert-x3/vertx-guide-for-java-devs . We welcome issue reports,
feedback and pull-requests!

1.2. What is Vert.x?

Eclipse Vert.x is a toolkit for building reactive applications on the JVM.

N Vert.x website

Eclipse Vert.x (which we will just call Vert.x in the remainder of this document) is an opensource
project at the Eclipse Foundation. Vert.x was initiated in 2012 by Tim Fox.

https://github.com/vert-x3/vertx-guide-for-java-devs

Vert.x is not a framework but a toolkit: the core library defines the fundamental APIs for writing
asynchronous networked applications, and then you can pick the useful modules for your
application (e.g., database connection, monitoring, authentication, logging, service discovery,
clustering support, etc). Vert.x is based on the Netty project , a high-performance asynchronous
networking library for the JVM. Vert.x will let you access the Netty internals if need be, but in
general you will better benefit from the higher-level APIs that Vert.x provides while not sacrificing
performance compared to raw Netty.

Vert.x does not impose any packaging or build environment. Since Vert.x core itself is just a regular
Jar library it can be embedded inside applications packaged as a set of Jars, a single Jar with all
dependencies, or it can even be deployed inside popular component and application containers.

Because Vert.x was designed for asynchronous communications it can deal with more concurrent
network connections with less threads than synchronous APIs such as Java servlets or java.net
socket classes. Vert.x is useful for a large range of applications: high volume message / event
processing, micro-services, API gateways, HTTP APIs for mobile applications, etc. Vert.x and its
ecosystem provide all sorts of technical tools for building end-to-end reactive applications.

While it may sound like Vert.x is only useful for demanding applications, the present guide also

states that Vert.x works very well for more traditional web applications. As we will see, the code

will remain relatively easy to comprehend, but if the application needs to face a sudden peak in

traffic then the code is already written with the essential ingredient for scaling up: asynchronous
processing of events.

Finally, it is worth mentioning that Vert.x is polyglot as it supports a wide range of popular JVM
languages: Java, Groovy, Scala, Kotlin, JavaScript, Ruby and Ceylon. The goal when supporting a
language in Vert.x is not just to provide access to the APls, but also to make sure that the language-
specific APIs are idiomatic in each target language (e.g., using Scala futures in place of Vert.x
futures). It is well-possible to develop different technical parts of a Vert.x application using
different JVM languages.

1.3. Core Vert.x concepts

There are 2 key concepts to learn in Vert.x:

1. what a verticle is, and

2. how the event bus allows verticles to communicate.

1.3.1. Threading and programming models

Many networking libraries and frameworks rely on a simple threading strategy: each network

client is being assigned a thread upon connection, and this thread deals with the client until it
disconnects. This is the case with Servlet or networking code written with the java.io and java.net
packages. While this "synchronous I/O" threading model has the advantage of remaining simple to
comprehend, it hurts scalability with too many concurrent connections as system threads are not
cheap, and under heavy loads an operating system kernel spends significant time just on thread
scheduling management. In such cases we need to move to "asynchronous /0" for which Vert.x
provides a solid foundation.

http://netty.io/

The unit of deployment in Vert.x is called a Verticle . A verticle processes incoming events over an
event-loop, where events can be anything like receiving network buffers, timing events, or
messages sent by other verticles. Event-loops are typical in asynchronous programming models:

00O Events
@

Event Loop (@

€=====

Thread

Each event shall be processed in a reasonable amount of time to not block the event loop. This
means that thread blocking operations shall not be performed while executed on the event loop,
exactly like processing events in a graphical user interface (e.g., freezing a Java / Swing interface by
doing a slow network request). As we will see later in this guide, Vert.x offers mechanisms to deal
with blocking operations outside of the event loop. In any case Vert.x emits warnings in logs when

the event loop has been processing an event for too long, which is also configurable to match
application-specific requirements (e.g., when working on slower 10T ARM boards).

Every event loop is attached to a thread. By default Vert.x attaches 2 event loops per CPU core
thread. The direct consequence is that a regular verticle always processes events on the same
thread, so there is no need to use thread coordination mechanisms to manipulate a verticle state
(e.g, Java class fields).

A verticle can be passed some configuration (e.g., credentials, network addresses, etc) and a verticle
can be deployed several times:

POOOOGOGOGOS \ El Configuration
Network events come k‘?

from acceptor threads
XX X X X X X/
‘ Deploy

Incoming network data are being received from accepting threads then passed as events to the
corresponding verticles. When a verticle opens a network server and is deployed more than once,
then the events are being distributed to the verticle instances in a round-robin fashion which is
very useful for maximizing CPU usage with lots of concurrent networked requests. Finally, verticles
have a simple start / stop life-cycle, and verticles can deploy other verticles.

v
Verticle

1.3.2. Event bus

Verticles form technical units of deployments of code in Vert.x. The Vert.x event bus is the main tool
for different verticles to communicate through asynchronous message passing. For instance
suppose that we have a verticle for dealing with HTTP requests, and a verticle for managing access

to the database. The event bus allows the HTTP verticle to send a request to the database verticle
that performs a SQL query, and responds back to the HTTP verticle:

Event Bus

S ' {dataf
" f "
/ \3 \a;

1

N
“Details for user 12347"

.
Ptiae
.

Hittp server verticle Database client verticle

The event-bus allows passing any kind of data, although JSON is the preferred exchange format
since it allows verticles written in different languages to communicate, and more generally JSON is
a popular general-purpose semi-structured data marshaling text format.

Message can be sent to destinations which are free-form strings. The event bus supports the
following communication patterns:

1. point-to-point messaging, and

2. request-response messaging and

3. publish / subscribe for broadcasting messages.
The event bus allows verticles to transparently communicate not just within the same JVM process:
¥ when network clustering is activated, the event bus is distributed so that messages can be sent

to verticles running on other application nodes,

¥ the event-bus can be accessed through a simple TCP protocol for third-party applications to
communicate,

¥ the event-bus can also be exposed over general-purpose messaging bridges (e.g, AMQP, Stomp),

¥ a SockJS bridge allows web applications to seamlessly communicate over the event bus from
JavaScript running in the browser by receiving and publishing messages just like any verticle
would do.

Chapter 2. A minimally viable wiki written
with Vert.x

" The corresponding source code is inthe step-1 folder of the guide repository.

We are going to start with a first iteration and the simplest code possible to have a wiki written
with Vert.x. While the next iterations will introduce more elegance into the code base as well as
proper testing, we will see that quick prototyping with Vert.x is both a simple and a realistic target.

At this stage the wiki will use server-side rendering of HTML pages and data persistence through a
JDBC connection. To do so, we will use the following libraries.

1. Vert.x web as while the Vert.x core library does support the creation of HTTP servers, it does not
provide elegant APIs to deal with routing, handling of request payloads, etc.

2. Vert.x JDBC client to provide an asynchronous API over JDBC.

3. Apache FreeMarker to render server-side pages as it is an uncomplicated template engine.

4, Txtmark to render Markdown text to HTML, allowing the edition of wiki pages in Markdown.

2.1. Bootstrapping a Maven project

This guide makes the choice of using Apache Maven as the build tool, primarily because it is very
well integrated with the major integrated development environments. You can equally use another
build tool such as Gradle.

The Vert.x community offers a template project structure from https://github.com/vert-x3/vertx-
maven-starter that can be cloned. Since you will likely want to use (Git) version control as well, the
fastest route is to clone the repository, delete its .git/ folder and then create a new Git repository:

git clone https://github.com/vert-x3/vertx-maven-starter.git vertx-wiki
cd vertx-wiki

rm -rf .git

git init

The project offers a sample verticle as well as a unit test. You can safely delete all Java files

beneath src/ to hack on the wiki, but before doing so you may test that the project builds and runs
successfully:

mvn package exec:java

You will notice that the Maven project pom.xmldoes 2 interesting things:

1. it uses the Maven Shade Plugin to create a single Jar archive with all required dependencies,
suffixed by -fat.jar , also called "a fat Jar", and

http://vertx.io/docs/vertx-web/java/
http://vertx.io/docs/vertx-jdbc-client/java/
http://freemarker.org/
https://github.com/rjeschke/txtmark
https://maven.apache.org
https://gradle.org/
https://github.com/vert-x3/vertx-maven-starter
https://github.com/vert-x3/vertx-maven-starter
https://maven.apache.org/plugins/maven-shade-plugin/

2. it uses the Exec Maven Plugin to provide the exec:java goal that in turns starts the application
through the Vert.x io.vertx.core.Launcher class. This is actually equivalent to running using the
vertx command-line tool that ships in the Vert.x distribution.

Finally, you will notice the presence of the redeploy.sh and redeploy.bat scripts that you can
alternatively use for automatic compilation and redeployment upon code changes. Note that doing

SO requires ensuring that the VERTICLEariable in these scripts matches the main verticle to be
used.

Alternatively, the Fabric8 project hosts a Vert.x Maven plugin . It has goals to
initialize, build, package and run a Vert.x project.

To generate a similar project as by cloning the Git starter repository:

mkdir vertx-wiki

cd vertx-wiki

mvn io.fabric8:vertx-maven-plugin:1.0.7:setup -DvertxVersion=3.5.0
git init

2.2. Adding the required dependencies

The first batch of dependencies to add to the Maven pom.xmlfile are those for the web processing
and rendering:

<dependency>

E <groupld>io.vertx </groupld>

E <artifactld> vertx-web </artifactld>
</dependency>

<dependency>

E <groupld>io.vertx </groupld>

E <artifactld> vertx-web-templ-freemarker </artifactld>
</dependency>

<dependency>

E <groupld>com.github.rjeschke </groupld>
E <artifactld> txtmark </artifactld>

E <version>0.13</version>

</dependency>

As the vertx-web-templ-freemarker name suggests, Vert.x web provides pluggable
support for popular template engines: Handlebars, Jade, MVEL, Pebble, Thymeleaf
and of course Freemarker.

The second set of dependencies are those required for JDBC database access:

http://www.mojohaus.org/exec-maven-plugin/
https://vmp.fabric8.io/

<dependency>

E <groupld>io.vertx </groupld>

E <artifactld> vertx-jdbc-client </artifactld>
</dependency>

<dependency>

E <groupld>org.hsqldb </groupld>

E <artifactld> hsqgldb</artifactld>

E <version>2.3.4 </version>

</dependency>

The Vert.x JDBC client library provides access to any JDBC-compliant database, but of course our
project needs to have a JDBC driver on the classpath .

HSQLDB is well-known relational database that is written in Java. It is quite popular when used as
an embedded database to avoid the requirement of having a third-party database server running
separately. It is also popular for unit and integration testing as it offers a (volatile) in-memory
storage.

HSQLDB as an embedded database is a good fit to get us started. It stores data in local files, and
since the HSQLDB library Jar provides a JDBC driver the Vert.x JDBC configuration will be
straightforward.

Vert.x also offers dedicated MySQL and PostgreSQL client libraries.

Of course you can use the general-purpose Vert.x JDBC client to connect to MySQL
or PostgreSQL databases, but these libraries offers better performance by working
with these 2 database server network protocols rather than going through the
(blocking) JDBC APIs.

Vert.x also provides libraries to deal with the popular non-relational databases
MongoDB and Redis. The larger community offers integration with other storage
systems like Apache Cassandra, OrientDB or ElasticSearch.

2.3. Anatomy of a verticle

The verticle for our wiki consists of a single io.vertx.guides.wiki.MainVerticle Java class. This class
extends io.vertx.core.AbstractVerticle , the base class for verticles that mainly provides:
1. life-cycle start and stop methods to override,

2. a protected field called vertx that references the Vert.x environment where the verticle is being
deployed,

3. an accessor to some configuration object that allows passing external configuration to a verticle.

To get started our verticle can just override the start method as follows:

http://hsqldb.org/
http://vertx.io/docs/vertx-mysql-postgresql-client/java/
http://vertx.io/docs/vertx-mongo-client/java/
http://vertx.io/docs/vertx-redis-client/java/

public class MainVerticle extends AbstractVerticle {

E @Override
E public void start (Future<Void> startFuture) throws Exception {
E startFuture .complete();

E}
}

There are 2 forms of start (and stop) methods: 1 with no argument and 1 with a future object
reference. The no-argument variants imply that the verticle initialization or house-keeping phases

always succeed unless an exception is being thrown. The variants with a future object provide a
more fine-grained approach to eventually signal that operations succeeded or not. Indeed, some
initialization or cleanup code may require asynchronous operations, so reporting via a future object

naturally fits with asynchronous idioms.

2.4. A word on Vert.x future objects and callbacks

Vert.x futures are not JDK futures: they can be composed and queried in a non-blocking fashion.
They shall be used for simple coordination of asynchronous tasks, and especially those of deploying
verticles and checking if they were successfully deployed or not.

The Vert.x core APIs are based on callbacks to notify of asynchronous events. The seasoned
developer will naturally think that this opens the door to the so-called "callback hell" where
multiple levels of nested callbacks render the code difficult to comprehend as illustrated by this
fictional code:

foo.a(1, resl -> {
E if (resl.succeeded)) {

E bar.b("abc", 1, res2 -> {
E if (res.succeeded)) {
E baz c(res3 -> {

E dosomething resl, res2, res3, res4 -> {
E I(...)

E D;

E bk

E }

E D

E}

D;

While the core APIs could have been designed to favor promises and futures, the choice of callbacks
is actually interesting since it allows different programming abstractions to be used. Vert.x is a
largely un-opinionated project, and callbacks allow the implementation of different models that
better cope with asynchronous programming: reactive extensions (via RxJava), promises and
futures, fibers (using bytecode instrumentation), etc.

Since all Vert.x APIs are callback-oriented before other abstractions like RxJava can be leveraged,

10

this guide only uses callbacks in the first sections to ensure that the reader gets familiar with the
core concepts in Vert.x. It is also arguably easier to start with callbacks to draw a line between the
many sections of asynchronous code. Once it becomes evident in the sample code that callbacks do
not always lead to easily readable code, we will introduce the RxJava support to show how the
same asynchronous code can be better expressed by thinking in streams of processed events.

2.5. Wiki verticle initialization phases

To get our wiki running, we need to perform a 2-phases initialization:

1. we need to establish a JDBC database connection, and also make sure that the database schema
is in place, and

2. we need to start a HTTP server for the web application.

Each phase can fail (e.g., the HTTP server TCP port is already being used), and they should not run
in parallel as the web application code first needs the database access to work.

To make our code cleaner we will define 1 method per phase, and adopt a pattern of returning a
future / promise object to notify when each of the phases completes, and whether it did so
successfully or not:

private Future <Void> prepareDatabaseg) {
E Future<Void> future = Future. future ();
E/(.)

E return future :

}

private Future<Void> startHttpServer () {
E Future<Void> future = Future. future ();
E (.

E return future ;

}

By having each method returning a future object, the implementation of the start method becomes
a composition:

@Override

public void start (Future<Void> startFuture) throws Exception {

E Future<Void> steps = prepareDatabasg). composgv -> startHttpServer ());
E steps. setHandler (startFuture . completer());

}

When the future of prepareDatabase completes successfully, then startHttpServer is called and the
steps future completes depending of the outcome of the future returned by startHttpServer .
startHttpServer is never called if prepareDatabase encounters an error, in which case the steps
future isin a failed state and becomes completed with the exception describing the error.

Eventually steps completes: setHandler defines a handler to be called upon completion. In our case
we simply want to complete startFuture with steps and use the completer method to obtain a
handler. This is equivalent to:

Future<Void> steps = prepareDatabasg). composév -> startHttpServer ());
steps. setHandler(ar -> { !

E if (ar.succeeded)) {

E startFuture .complete();

E} else {

E startFuture .fail (ar.cause);

E}

D;

I ar is of type AsyncResult<Void> AsyncResult<T>is used to pass the result of an asynchronous
processing and may either yield a value of type T on success or a failure exception if the
processing failed.

2.5.1. Database initialization

The wiki database schema consists of a single table Pageswith the following columns:

Column Type Description

Id Integer Primary key

Name Characters Name of a wiki page, must be
unique

Content Text Markdown text of a wiki page

The database operations will be typical create, read, update, delete operations. To get us started, we
simply store the corresponding SQL queries as static fields of the MainVerticle class. Note that they
are written in a SQL dialect that HSQLDB understands, but that other relational databases may not
necessarily support:

private static final String SQL_CREATE_PAGES_TABitEate table if not exists Pages (Id integer identity primary key,
Name varchar(255) unique, Content clob)"

private static final String SQL_GET_PAG&Eselect Id, Content from Pages where Name =?" ; |

private static final String SQL_CREATE_PAGHsert into Pages values (NULL, ?, ?)"

private static final String SQL_SAVE_PAGHIpdate Pages set Content = ? where Id = ?"

private static final String SQL_ALL_PAGESselect Name from Pages" ;

private static final String SQL_DELETE_PAGHelete from Pages where Id = ?"

I' The ?in the queries are placeholders to pass data when executing queries, and the Vert.x JDBC
client prevents from SQL injections.

The application verticle needs to keep a reference to a JDBCClient object (from the
io.vertx.ext.jdbc package) that serves as the connection to the database. We do so using a field in
MainVerticle , and we also create a general-purpose logger from the org.slf4j package:

12

private JDBCClient dbClient ;

private static final Logger LOGGER LoggerFactory. getLogger(MainVerticle . class);

Last but not least, here is the complete implementation of the prepareDatabase method. It attempts
to obtain a JDBC client connection, then performs a SQL query to create the Pagestable unless it
already exists:

private Future<Void> prepareDatabaseg) {
E Future<Void> future = Future. future ();

E dbClient = JDBCClient createShared(vertx , newJsonObject() !
E .put("url" , “jdbc:hsqgldb:file:db/wiki") "
E .put('driver_class" , "org.hsgldb.jdbcDriver®) #
E .put("max_pool_size", 30)); $
E dbClient . getConnection(ar -> { %
E if (ar.failed () {
E LOGGE®&ror ("Could not open a database connection" , ar. cause));
E future . fail (ar.cause)); &
E } else {
E SQLConnectionconnection = ar. result (); ‘
E connection . execute(SQL_CREATE_PAGES TABide -> {
E connection. close (); (
E if (create.failed () {
E LOGGE®ror ("Database preparation error* , create . causg));
E future . fail (create . causg));
E } else {
E future . complete();)
E }
E M
E }
E);
E return future ;
}
I createShared creates a shared connection to be shared among verticles known to the vertx

instance, which in general is a good thing.
The JDBC client connection is made by passing a Vert.x JSON object. Here url is the JDBC URL.
Just like url , driver_class is specific to the JDBC driver being used and points to the driver class.

$ max_pool_size is the number of concurrent connections. We chose 30 here, but it is just an
arbitrary number.

% Getting a connection is an asynchronous operation that gives us an AsyncResult<SQLConnection>
It must then be tested to see if the connection could be established or not (AsyncResult is actually
a super-interface of Future).

13

& If the SQL connection could not be obtained, then the method future is completed to fail with the
AsyncResult-provided exception via the cause method.

The SQLConnectionis the result of the successful AsyncResult. We can use it to perform a SQL
query.

(Before checking whether the SQL query succeeded or not, we must release it by calling close,
otherwise the JDBC client connection pool can eventually drain.

) We complete the method future object with a success.

The SQL database modules supported by the Vert.x project do not currently offer
anything beyond passing SQL queries (e.g., an object-relational mapper) as they

" focus on providing asynchronous access to databases. However, nothing forbids
using more advanced modules from the community , and we especially
recommend checking out projects like this JOOq generator for Vert.x or this POJO
mapper .

2.5.2. Notes about logging

The previous subsection introduced a logger, and we opted for the SLF4J library . Vert.x is also
unopinionated on logging: you can choose any popular Java logging library. We recommend SLF4J
since it is a popular logging abstraction and unification library in the Java ecosystem.

We also recommend using Logback as a logger implementation. Integrating both SLF4J and
Logback can be done by adding two dependencies, or just logback-classic that points to both
libraries (incidentally they are from the same author):

<dependency>

E <groupld>ch.gos.logback </groupld>

E <artifactld> logback-classic </artifactld>
E <version>1.2.3 </version>
</dependency>

By default SLF4J outputs many log events to the console from Vert.x, Netty, C3PO and the wiki
application. We can reduce the verbosity by adding the a src/main/resources/logback.xml
configuration file (see hitps://logback.qos.ch/ for more details):

14

https://github.com/vert-x3/vertx-awesome
https://github.com/jklingsporn/vertx-jooq
https://github.com/BraintagsGmbH/vertx-pojo-mapper
https://github.com/BraintagsGmbH/vertx-pojo-mapper
https://www.slf4j.org/
https://logback.qos.ch/
https://logback.qos.ch/

<configuration>

E <appender nameSTDOUT¢lass="ch.qos.logback.core.ConsoleAppender" >

E <encoder>

E <pattern> %d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%x/pattern>
E </encoder>

E </appender>

E <logger name*com.mchange.v2" level= "warn"/>

E <logger name%%o.netty" level= "warn"/>

E <logger name4o.vertx" level= "info" />

E <logger nameo.vertx.guides.wiki" level= "debug"/>

E <root level= "debug">
E <appender-ref ref="STDOUT®
E </root>

</configuration>

Last but not least HSQLDB does not integrate well with loggers when embedded. By default it tries
to reconfigure the logging system in place, so we need to disable it by passing a
-Dhsqgldb.reconfig_logging=false property to the Java Virtual Machine when executing applications.

2.5.3. HTTP server initialization

The HTTP server makes use of the vertx-web project to easily define dispatching routes for incoming
HTTP requests. Indeed, the Vert.x core API allows to start HTTP servers and listen for incoming
connections, but it does not provide any facility to, say, have different handlers depending on the
requested URL or processing request bodies. This is the role of a router as it dispatches requests to
different processing handlers depending on the URL, the HTTP method, etc.

The initialization consists in setting up a request router , then starting the HTTP server:

15

private Future<Void> startHttpServer () {
E Future<Void> future = Future. future ();
E HttpServer server = vertx . createHttpServer (); !

E Router router = Router. router (vertx); "

E router . get("/"). handler (this :: indexHandler);

E router . get("/wiki/:page"). handler (this :: pageRenderingHandle); #
E router . post(). handler (BodyHandler create ()); $

E router . post("/save"). handler (this :: pageUpdateHandley;

E router . post("/create”). handler (this :: pageCreateHandle);

E router . post("/delete”). handler (this :: pageDeletionHandler);

E server

E .requestHandler (router: :accept) %

E .listen (808Q ar -> { &

E if (ar.succeeded)) {

E LOGGERfo ("HTTP server running on port 8080");

E future . complete();

E } else {

E LOGGE®&ror ("Could not start a HTTP server” , ar. causg));
E future . fail (ar.cause));

E)

E D

E return future :

}

I The vertx context object provides methods to create HTTP servers, clients, TCP/UDP servers and
clients, etc.

The Router class comes from vertx-web : io.vertx.ext.web.Router

Routes have their own handlers, and they can be defined by URL and/or by HTTP method. For
short handlers a Java lambda is an option, but for more elaborate handlers it is a good idea to
reference private methods instead. Note that URLs can be parametric: /wiki/:page will match a
request like /wiki/Hello , in which case a pageparameter will be available with value Hello .

$ This makes all HTTP POST requests go through a first handler, here
io.vertx.ext.web.handler.BodyHandler . This handler automatically decodes the body from the
HTTP requests (e.g., form submissions), which can then be manipulated as Vert.x buffer objects.

% The router object can be used as a HTTP server handler, which then dispatches to other
handlers as defined above.

& Starting a HTTP server is an asynchronous operation, so an AsyncResult<HttpServer> needs to be
checked for success. By the way the 8080 parameter specifies the TCP port to be used by the
server.

2.6. HTTP router handlers

The HTTP router instance of the startHttpServer method points to different handlers based on URL

16

patterns and HTTP methods. Each handler deals with an HTTP request, performs a database query,

and renders HTML from a FreeMarker template.

2.6.1. Index page handler

The index page provides a list of pointers to all wiki entries and a field to create a new one:

L Wiki home | A Sample Vert.x-; X

& 2> C @ localhost:8080

Wiki home

Pages:

e Apple
* Golo
o Water

The implementation is a straightforward select *
FreeMarker engine to render the HTML response.

The indexHandler method code is as follows:

New page name

SQL query where data is then passed to the

17

private final FreeMarkerTemplateEnginetemplateEngine = FreeMarkerTemplateEnginecreate ();

private void indexHandler(RoutingContext context) {
E dbClient . getConnection(car -> {

E if (car.succeeded) {

E SQLConnectionconnection = car. result ();

E connection . query(SQL_ALL PAGES®s -> {

E connection. close ();

E if (res.succeeded)) {

E List <String > pages = res.result () !

E . getResults ()

E . stream()

E . magjson -> json.getString (0))

E . sorted ()

E .collect (Collectors .toList ());

E context . put("title” , "Wiki home"); "

E context . put(“pages”, pages;

E templateEngine. render(context, "templates" , "/index.ftl" , ar -> { #
E if (ar.succeeded)) {

E context . response(). putHeader("Content-Type", "text/html");
E context . response(). end ar.result ()); $
E } else {

E context . fail (ar. causq));

E }

E D

E } else {

E context . fail (res.cause)); %

E }

E D

E 1} else {

E context . fail (car. cause));

E }

ED;

}

I SQL query results are being returned as instances of JsonArray and JsonObject.

The RoutingContext instance can be used to put arbitrary key / value data that is then available
from templates, or chained router handlers.

Rendering a template is an asynchronous operation that leads us to the usual AsyncResult
handling pattern.

$ The AsyncResult contains the template rendering as a String in case of success, and we can end
the HTTP response stream with the value.

% In case of failure the fail method from RoutingContext provides a sensible way to return a HTTP
500 error to the HTTP client.

FreeMarker templates shall be placed in the src/main/resources/templates folder. The index.ftl

18

template code is as follows:

<#include "header.ftl">
<div class="row" >

<div class="col-md-12 mt-1" >
<div class="float-xs-right" >
<form class="form-inline" action="/create" method=post" >
<div class="form-group" >
<input type="text" class="form-control* id="name" nametname" placeholder="New page name*
</div>
<button type="submit" class="btn btn-primary" >Create</button>
</form>
</div>
<h1 class="display-4" >${context.title} </h1>
</div>

T > e e mp mp me me mp mh [T

<div class="col-md-12 mt-1" >
<t#list context.pages>
<h2*Pages:</h2>

<f#items as page>
${page}
</#items>

<#else>
<p>The wiki is currently empty! </p>
</#list>
E </div>

T e e mp mp mpe me mp T T e

</div>

<#include "footer.ftl">

Key / value data stored in the RoutingContext object is made available through the context
FreeMarker variable.

Since lots of templates have common header and footers, we extracted the following code in
header.ftl and footer.ftl

19

header ftl

<IDOCTYPE html>

<html lang="en">

<head>

E <meta charset="utf-8" >

E <meta nametviewport" content="width=device-width, initial-scale=1, shrink-to-fit=no" >

E <meta http-equiv= "x-ua-compatible” content="ie=edge" >

E <link rel= "stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.5/css/bootstrap.min.css"

E integrity= "sha384-AysaV+vQoT3kOAXZklI02PThvDr8HYKPZhNT5h/CXfBThSRXQ6jW5DO2ekB836Fdih= "anonymous®
E <title> ${context.title} | A Sample Vert.x-powered Wiki <[title>

</head>

<body>

<div class="container" >

footer.ftl

2.

</div> <!-- .container -->

<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.1.1/jquery.min.js"

E integrity= "sha384-3ceskX3iaEnlogmQchP8opvBy3Mi7Ce34nWjpBIwVTHGYWQS9jwHDVRNpKKHJIg7"
E crossorigin= "anonymous></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/tether/1.3.7/js/tether.min.js"

E integrity= "sha384-XTs3FgkjiBgo8qjEjBkOtGmf3wPrWtA6coPfQDfFEY8AnYJwjalXCiosYRBIBZX8"

E crossorigin= "anonymous></script>

<script src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.5/js/bootstrap.min.js"
integrity= "sha384-BLil7JTZm+JWIgKaOMOkGRpJbF2J8g+qreVrKBC47e3K6BW78kGLrCkeRX619RoK"
crossorigin= "anonymous></script>

T TP

</body>
</html>

6.2. Wiki page rendering handler

This handler deals with HTTP GET requests to have wiki pages being rendered, as in:

20

